Arsip Blog

Diberdayakan oleh Blogger.

Sabtu, 16 Mei 2015

The Whys And Hows Of Sediment Remediation

By Tammie Caldwell


Soils and sediments may become contaminated by diesel, petroleum, BTEX, polycyclic aromatic hydrocarbons (PAHs) and other volatile and semi volatile organic compounds. Sediment remediation is the process of neutralizing contaminants and restoring environments to their pre-contamination condition. There is a variety of treatment options available and the choice of which one to use depends on the nature of the contaminant and on the time and money that are available for the procedure.

Sedimentary contamination refers specifically to underwater soils. When the sediment underlying rivers and harbors becomes compromised, their navigational and recreational use is impaired. As of 2004, the Environmental Protection Agency estimated there were roughly 144 sites that required cleaning up. Sixty of these were considered major enough to require tracking at the national level, while others could be tackled by state or local authorities, by voluntary action or by other federal agencies.

Soil remediation is tackled by three basic approaches: monitored natural recovery, dredging and in situ capping. The sources of the contamination include mining and industrial accidents like oil leaks, chemical spills, etc. As well as the contaminants mentioned earlier, things like pesticides, metals and organometals, cyanide, pthalate esters and hydrocarbons in the form of PCBs and mononuclear aromatic hydrocarbons enter the soil environment.

Some of these substances are either completely insoluble or only partially soluble in aqueous solvents and end up becoming embedded in aquatic sedimentation. This means these poisons are indetectable in the water column. The organic content of these particles, their size and shape, and the ecology of benthic oranisms (bottom feeders) all promote the steady accumulation of contaminated sediments.

Once a land remediation authority or other government authority requests that an area be remediated, immediate action is necessary for the protection of the environment as well as human health. Remediation is subject to regulatory oversight. In the United States, this oversight is provided by the Environmental Protection Agency (EPA), Region 9.

The remediation process is carried out at the nanotechnological level. This involves the use of nanoparticles. These are between one and 100 nanoparticles in size. A nanometer is the equivalent of 1 x 10 to the minus ninth meter. Nanoparticles have a high surface area:mass ratio, making them very reactive. Their minute size also allows them to infiltrate tiny nooks and crannies in sediments, bringing them into closer proximity to their target contaminants.

During the nanoremediation process, a decontaminant on the nanoparticle scale comes into contact with a target contaminant in a detoxification reaction. To date, the global nanoremediation project has identified up to 70 sites around the world that require this type of treatment. Currently, nanorem treatment has been used to clean up groundwater projects, although research is being conducted into using it for wastewater treatment.

What makes nanoremediation is the minute scale of the contaminants being removed. Any idiot can filter out junk the size of coffee grounds. Nanoparticles are too small to filter using available technology, and so that is why neutralizing chemical reactions are necessary. Once those are under control, maybe we can start tackling pico particles, which are one thousandth of a billionth of a meter.




About the Author:



Tidak ada komentar:

Posting Komentar

Followers

Copyright 2012 AUTO BLOG | Designed By Kang Mis.